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Kinetic growth of randomlike and ballisticlike deposition models
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The pattern structure and the scaling behavior of the surface width for two deposition models of two
kinds of particles, particle 4 with a probability 1 — P and particle C with a probability P, depositing on a
(1+ 1)-dimensional substrate are studied. For model I, a randomlike deposition model, the pattern has a
compact structure, and the surface width growth only depends on the time, W ~t'/2 for the early stage
and W~ PP for the intermediate time where 3 is a function of P, as well as W~ P "7 for the later time.
For model II, a ballisticlike deposition model, the pattern and scaling behavior are similar to the ballistic
deposition. The scaling of the surface width is W ~ AP for the early stage of growth and W ~ L for the
later stage. The exponent 3 is a function of P, while «a is independent of P.

PACS number(s): 61.50.Cj, 05.40.+j, 68.35.Rh

I. INTRODUCTION

Recently, there has been considerable interest in the
study of the morphology of growing surfaces or inter-
faces, not only because of its potential technological im-
portance, but also due to its manifestation of interesting
nonequilibrium statistical physics at fundamental levels
[1]. Most of these studies contain rough surfaces and sto-
chastically growing interfaces in the context of ballistic
deposition [2], the Eden model [3,4], and the solid-on-
solid model [5,6], as well as the molecular-beam deposi-
tion [7,8] and the continuum stochastic equation of Kar-
dar, Parisi, and Zhang (KPZ) [9].

A novel feature of this phenomenon is the existence of
scaling [10], i.e., if we start at £ =0 from a flat surface of
length L, we have

W(L,t)=L°f(t/L*) , (1)

where W(L,t) is the rms roughness of the surface, or the
surface width
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Here h (r,t) is the height of the surface at position » and
time ¢, A (7) is the average height at time ¢, and d'=d — 1
is the substrate dimension in d-dimensional space. The
roughness exponent a characterizes the self-affine fractal
nature of the surface represented by the scaling W~L¢,
in the long-time limit. At the early stage of growth
t << L? the scaling function f (¢ /L?) is such that W ~¢5,
where B=a /z and z is the dynamic exponent.

A phenomenological equation, which applies to a large
class of surface growth models, is the KPZ equation [9]
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where the noise n(r,t) satisfies (n(r,t)n(r',t"))
=2D8(r—r')8(t—t'). It is a nonlinear equation for the
time dependence of the interface height A (r,t) in a d-
dimensional system, above a (d —1)-dimensional plane.
The KPZ equation has been quite successful in describing
a wide variety of growth models, including ballistic ag-
gregation, the Eden model, and vapor deposition [1].

The diffusion-limited-aggregation model produces a
self-similar fractal structure [11]. The Eden model and
the ballistic-deposition model give rough surfaces that are
self-affine but not self-similar. Various models that are
used for the study of surface phenomena only concern the
growing of one kind of particle [1]. However, in the
growing of real materials one may take into consideration
that different particles are deposited on these structures
(i.e., alloys or impurities). Thus, in the growing system,
there may exist different interactions for different parti-
cles. The growing mechanism will also be changed.

In this paper we describe the kinetic growth of the
deposition of two kinds of particles 4 and C (particle 4
with probability 1—P and particle C with probability P)
on a d-dimensional substrate, using two different models:
(i) randomlike deposition and (ii) ballisticlike deposition.
The organization of this paper is as follows. In Sec. II,
we present the models and the results of the aggregation
patterns. In Sec. III, the dynamical scaling behavior of
the surface width Eq. (1) is studied. In the last section,
we give the summary.

II. MODELS AND AGGREGATION PATTERNS

We consider the deposition of two different kinds of
particles, particle A (the active particle) and particle C
(the nonactive particle) onto a d-dimensional substrate.
In the initial configuration all sites on the substrate are
occupied by particle 4. The particles are allowed to fall
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straight down randomly, one at a time, onto a growing
surface and stick where they land according to the mod-
els described below. In both models, first a site is chosen
randomly, and then with probability 1 —P (or P) a parti-
cle A (or particle C) is deposited on the surface of the ag-
gregation depending on the following conditions.

Model 1. The deposition occurs when the particle on
the top of the chosen site is particle A, or if the particle
on the top of the chosen site is particle C and one of the
nearest neighbors (one unit higher than the top of the
chosen site) is particle 4.

Model II. The deposition occurs once the dropping
particle first encounters a particle 4 wherever it is on the
top or the tops of the two nearest-neighbor columns of
the chosen site. For instance, if the dropping particle
falls down along column 7, and it first meets a particle 4,
which is on the top of the column i+ 1 (no matter what
kind of particle is on the top of column i), this dropping
particle will stick to this particle 4 and the falling stops.
Obviously, if the dropping particle first meets a particle
A which is just on the top of column i, it stops and de-
posits there. It is clear that the difference between model
II and model I is whether sticking to the side of a column
is allowed or not.

Obviously, model I is a randomlike deposition model.
For P =0, the deposition of model I is just the same as
the random model [10], which is a trivial surface growth
model in which a particle simply falls until it reaches the
top of a column. Since there are no correlations between
the columns, these grow independently; however, the sur-
face is rough. When P+0 once a particle C is deposited
on a column, its growth will depend on the nearest neigh-
bors. This introduces a correlation between the different
columns. For a larger P, the growth of the aggregation
may reach a saturation state earlier than that of the case
of smaller P. However, the situation is different for mod-
el II since this represents a ballisticlike deposition which
is a nontrivial model: there is a strong correlation be-
tween different columns. When P =0, model II is the
usual ballistic model [2]. Similarly, when P50, the depo-
sition process will be affected by the existence of particle
C; the aggregation may stop with larger P. But the “life-
time” of the system is much longer than that of model I,
and also the scaling behavior gives rise to some interest-
ing results (discussed in the following section).

These models may represent the chemical reactions
which take place in the surface of the growth of materi-
als. For example, we model the following reaction pro-
cess:

A+B=C. (4)

Particle A and particle B are active, and once particle 4
is touched by a particle B the combination produces a
reactant C which is no longer active. The particle 4 is
chosen with a probability 1 — P, and the particle B with P,
i.e., the reactant C is produced with the probability P.
Thus, in these systems, some of the surface sites continue
to react while some sites do not. The initial flat substrate
placed with particle A4 is for the reactions.

These models can also represent a growing interface of
a material with a low concentration of impurities. Our

models mimic the role of the impurity atoms as follows.
An impurity atom (particle C) is introduced with a proba-
bility P while it has a less active bond for other atoms
(particle A).

In the present paper, we report on the simulation of a
(1+1)-dimensional case. The substrate is a strip with the
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FIG. 1. Structure of the deposition (half part of the system
L =100). The open circles represent particle 4 and the solid
circles represent particle C. (a) Model I with P =0.05; (b)
model IT with P =0.2.
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width L (in the X direction). The aggregation is in the Y
direction. At the beginning, all sites are occupied by par-
ticle A4 for Y =0. A periodic boundary condition is used
in the L direction (in the X direction). The typical size of
system L used in our simulation is L =100. Some runs
on smaller and larger L have also been done.

In Fig. 1(a), we show one example of the aggregation
for model I with P =0.05. From this figure we see that
the surface is rough and the structure of the aggregate is
compact. Due to the correlation between the nearest
neighbors, particle C’s (or the impurity atoms) are sur-
rounded by particle 4’s. We can expect that if the prob-
ability P is very large the deposition will stop, i.e., the ag-
gregation will not grow more when all the surface sites
are covered by particle C.
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FIG. 2. Log-log plots of the surface width W (t) against ¢, the
numbers of the deposited particles. (a) With different probabili-
ty P and same system size L =100; (b) with the same probabili-
ty P =0.05 and different system sizes.
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TABLE 1. Relationship between the probability P and the
exponent 3 and the saturation value of the surface width for

model I.
P B log, W (t = )
0 1 o
0.01 1.80
0.03 1.66 11.25
0.05 1.54 9.6
0.1 1.36 7.0
0.15 1.22 5.6
0.2 1.16 4.5

In Fig. 1(b), we have showed an example of the pattern
of the ballisticlike aggregation model IT with P =0.2. Al-
though there are some vacancies or holes in the bulk of
the ballistic deposition, it is not a self-similar fractal be-
cause the density of the aggregate is finite. However, the
surface of the deposit is a self-affine fractal and its evolu-
tion can be described by the dynamical scaling approach,
which will be discussed in the following section.

III. DYNAMICAL SCALING BEHAVIOR

Figure 2(a) shows a plot of the surface width W with
time for different deposition probabilities for model I.
The system size is L =100 and the statistic average is
found by averaging over 50 runs. Curve (a) shows the
case of the random deposition of only one kind of particle
(particle A), i.e., with P =0 for particle C. As we have
seen in Fig. 1(a), since there are no correlations between
the columns, the height of the columns follows a Poisson
distribution [10]. The width of the surface is proportion-
al to the square root of the time t, W~t172, i.e., B=1, in-
dependent of the dimension [10]. There is no saturation
width, that is, no steady state. While P70, the scaling
behavior is changed. From curves (b)-(g) showed in
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FIG. 3. Log-log plot of the saturation value W(t =)

against the probability P.
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Fig. 2(a) for different deposition probabilities of the parti-
cle C there exists a steady state. The growth of the aggre-
gation is divided into two stages. At the early time, the
width grows with a power of time W ~t!/2, the same as
the random deposition. Then just before saturation, the
width grows with a power of time W ~t#. Here B is a
function of P, B=pB(P). In Table I, we present the rela-
tionship between 8 and P, as well as the saturated values
of the surface widths. We see that 8 increases with P,
however, the saturated values of the surface width W de-
creases.

Figure 2(b) shows a plot of the surface width of the
deposition for the randomlike growth (model I) as a func-
tion of time for different sizes of the system and for the
same probability P =0.05. From this figure, we see that
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FIG. 4. Log-log plots of the surface width W (¢) against ¢, the
number of deposited particles per site. (a) With different proba-
bility P and same system size L =100; (b) with different system
size L and same probability P =0.2.
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the surface width is independent of the system size and
the curves collapse onto one, except for L =20 and 60 be-
cause of the finite-size effect. We have done the same
simulation for different values of P and we got the same
conclusion. Thus, the scaling behavior is different from
Eq. (1) of our model I. In our opinion, this independence
of the system size of the surface width is due to the weak
correlation between the columns. Instead of this in-
dependence of the saturated surface width with the sys-
tem size, the surface width can be scaled with the proba-
bility P:

W(t=ow)~P Y=p 32, (5)

In Fig. 3, we have plotted the saturated values of the sur-
face width W(t =) against the probability P for
L =100. One can see that the slope of the plot is y = 3.
Since W (t = o) is independent of the system size, the ex-
ponent ¥ has the same value, for different system sizes.
We have done two runs for L =100 and 500, respectively,
and the points are coincident in Fig. 3.

Meanwhile, the case is very different for model II and
the scaling behavior similar to Eq. (1). In Fig. 4(a), we
show the surface width for different values of the proba-
bility but with the same system size fixed with L =100.
For each curve the statistical average is obtained by aver-
aged over 400 runs, except for L =1000, which is aver-
aged only over 100 runs. Curve (@) shows the case of
ballistic deposition with only one kind of particle (parti-
cle A). The best numerical estimates indicate that for
ballistic deposition in d =2, =1, and a=1 [12]. Our
results recover these exponents very well. However when
P40, the exponent 3 is different. From curves (b)—(f)
plotted in Fig. 4(a) we can see that the surface width
evolves according to W ~tPP (here we have put 3 as a
function of P). After some time, the surface width satu-
rates. The exponent 3 and the saturated values of the
surface widths W (¢t = ) with respect to P are present in
Table II. From Table II, we see that as the probability P
increases, the exponent 3 also increases which means the
process of deposition has slowed down. For P =0.4, the
probability of the deposition of particle C is so large that
the deposition is stopped before the surface width reaches
the saturated value. Thus we leave W (t= o) empty in
Table II.

In Fig. 4(b), we plot the surface width W against time
for different system sizes and with the probability
P =0.2. From this figure one get the exponent a.
Within the error of the calculation, we got a=%, the
value for the case of the usual ballistic model. We have

TABLE II. Relationship between the probability P and the
exponents f3 for model II.

P B
0 3
0.05 0.38
0.1 0.44
0.2 0.57
0.3 0.70
0.4 0.75
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FIG. 5. Log-log plot of saturation value W(t= o) against
the system size L for the probability P =0.1 and 0.2.

also checked this result for other values of the probabili-
ty, for example, P =0.1. The results are plotted in Fig. 5.

IV. SUMMARY

In this paper, we have studied the kinetic growth for
the randomlike and ballisticlike models. After introduc-
ing both models we have presented the growing patterns,
and then we have studied the dynamical scaling behavior.

For the randomlike growth model, we found that due to
the weak correlation of the aggregation, the pattern has a
compact structure, and in the early time of the deposition
the surface width can be scaled as W~t¢!/2, while
W ~tPP for the intermediate time. Then follows a satu-
ration which is independent of the system size, i.e., the
exponent a=0, but depends on the probability P,
W(t=o0)~P "7 with y=23. For the ballisticlike model,
model II, the pattern and scaling behavior is similar to
the ballistic deposition. The scaling of the surface width
can be described by W ~t#P)| with the exponent S being
a function of P, the probability, for the early stage of the
deposition. The a exponent is independent of P and
equals to the value of the usual ballistic deposition a= 1.

In Ref. [13], Keefer and Schaefer developed a variation
of the Eden model to study the growth and structure of
fractally rough silicate particle clusters by considering
the details of the silicate chemical process. In their mod-
el the active bonds (n) and nonactive bonds (4—n) of
each monomer are modeled by a random functional. Our
models are different from theirs since we only consider
the deposition process of two kinds of particles with
different bonds, and in addition, we have not included the
diffusion of particle C. We expect that considering this
diffusion the scaling behavior of the kinetic process will
change. The extension of such study to higher dimensions
is currently under examination.
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